229 research outputs found

    On global minimizers of quadratic functions with cubic regularization

    Get PDF
    In this paper, we analyze some theoretical properties of the problem of minimizing a quadratic function with a cubic regularization term, arising in many methods for unconstrained and constrained optimization that have been proposed in the last years. First we show that, given any stationary point that is not a global solution, it is possible to compute, in closed form, a new point with a smaller objective function value. Then, we prove that a global minimizer can be obtained by computing a finite number of stationary points. Finally, we extend these results to the case where stationary conditions are approximately satisfied, discussing some possible algorithmic applications.Comment: Optimization Letters (2018

    A Fast Active Set Block Coordinate Descent Algorithm for â„“1\ell_1-regularized least squares

    Get PDF
    The problem of finding sparse solutions to underdetermined systems of linear equations arises in several applications (e.g. signal and image processing, compressive sensing, statistical inference). A standard tool for dealing with sparse recovery is the â„“1\ell_1-regularized least-squares approach that has been recently attracting the attention of many researchers. In this paper, we describe an active set estimate (i.e. an estimate of the indices of the zero variables in the optimal solution) for the considered problem that tries to quickly identify as many active variables as possible at a given point, while guaranteeing that some approximate optimality conditions are satisfied. A relevant feature of the estimate is that it gives a significant reduction of the objective function when setting to zero all those variables estimated active. This enables to easily embed it into a given globally converging algorithmic framework. In particular, we include our estimate into a block coordinate descent algorithm for â„“1\ell_1-regularized least squares, analyze the convergence properties of this new active set method, and prove that its basic version converges with linear rate. Finally, we report some numerical results showing the effectiveness of the approach.Comment: 28 pages, 5 figure

    Analysis of flow cytometric aneuploid DNA histograms: validation of an automatic procedure against ad hoc experimental data

    Get PDF
    In this paper we present an improved version of a method for the automatic analysis of flow cytometric DNA histograms from samples containing a mixture of two cell populations. The procedure is tested against two sets of ad hoc experimental data, obtained by mixing cultures of cell lines in different known proportions. The potentialities of the method are enlightened and discussed with regard to its capability of recovering the population percentages, the DNA index and the G0/G1, S, G2+M phase fractions of each population. On the basis of the obtained results, the procedure appears to be a promising tool in the flow cytometric data analysis and, in particular, in problems of diagnosis and prognosis of tumor diseases

    An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

    Get PDF
    In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new "nonorthogonality" type of condition. We prove global convergence to stationary points when using an Armijo line search in the given framework. We further describe three different examples of active-set gradient related directions that guarantee linear convergence rate (under suitable assumptions). Finally, we report numerical experiments showing the effectiveness of the approach.Comment: 29 pages, 3 figure

    A derivative-free approach for a simulation-based optimization problem in healthcare

    Get PDF
    Hospitals have been challenged in recent years to deliver high quality care with limited resources. Given the pressure to contain costs,developing procedures for optimal resource allocation becomes more and more critical in this context. Indeed, under/overutilization of emergency room and ward resources can either compromise a hospital's ability to provide the best possible care, or result in precious funding going toward underutilized resources. Simulation--based optimization tools then help facilitating the planning and management of hospital services, by maximizing/minimizing some specific indices (e.g. net profit) subject to given clinical and economical constraints. In this work, we develop a simulation--based optimization approach for the resource planning of a specific hospital ward. At each step, we first consider a suitably chosen resource setting and evaluate both efficiency and satisfaction of the restrictions by means of a discrete--event simulation model. Then, taking into account the information obtained by the simulation process, we use a derivative--free optimization algorithm to modify the given setting. We report results for a real--world problem coming from the obstetrics ward of an Italian hospital showing both the effectiveness and the efficiency of the proposed approach

    Solving non-monotone equilibrium problems via a DIRECT-type approach

    Full text link
    A global optimization approach for solving non-monotone equilibrium problems (EPs) is proposed. The class of (regularized) gap functions is used to reformulate any EP as a constrained global optimization program and some bounds on the Lipschitz constant of such functions are provided. The proposed global optimization approach is a combination of an improved version of the \texttt{DIRECT} algorithm, which exploits local bounds of the Lipschitz constant of the objective function, with local minimizations. Unlike most existing solution methods for EPs, no monotonicity-type condition is assumed in this paper. Preliminary numerical results on several classes of EPs show the effectiveness of the approach.Comment: Technical Report of Department of Computer Science, University of Pisa, Ital

    An interior point method for nonlinear constrained derivative-free optimization

    Full text link
    In this paper we consider constrained optimization problems where both the objective and constraint functions are of the black-box type. Furthermore, we assume that the nonlinear inequality constraints are non-relaxable, i.e. their values and that of the objective function cannot be computed outside of the feasible region. This situation happens frequently in practice especially in the black-box setting where function values are typically computed by means of complex simulation programs which may fail to execute if the considered point is outside of the feasible region. For such problems, we propose a new derivative-free optimization method which is based on the use of a merit function that handles inequality constraints by means of a log-barrier approach and equality constraints by means of a quadratic penalty approach. We prove convergence of the proposed method to KKT stationary points of the problem under quite mild assumptions. Furthermore, we also carry out a preliminary numerical experience on standard test problems and comparison with a state-of-the-art solver which shows efficiency of the proposed method.Comment: We dropped the convexity assumption to take into account that convexity is no longer required, we changed the theoretical analysis, exposition of the main algorithm has changed. We first present a simpler method and then the main algorithm. Numerical results have been a lot extended by adding some compariso

    A clustering heuristic to improve a derivative-free algorithm for nonsmooth optimization

    Get PDF
    In this paper we propose an heuristic to improve the performances of the recently proposed derivative-free method for nonsmooth optimization CS-DFN. The heuristic is based on a clustering-type technique to compute an estimate of Clarke’s generalized gradient of the objective function, obtained via calculation of the (approximate) directional derivative along a certain set of directions. A search direction is then calculated by applying a nonsmooth Newton-type approach. As such, this direction (as it is shown by the numerical experiments) is a good descent direction for the objective function. We report some numerical results and comparison with the original CS-DFN method to show the utility of the proposed improvement on a set of well-known test problems

    A derivative-free approach to constrained multiobjective nonsmooth optimization

    Get PDF
    open3noopenLiuzzi, G.; Lucidi, S.; Rinaldi, F.Liuzzi, G.; Lucidi, S.; Rinaldi, Francesc

    Derivative-free methods for mixed-integer nonsmooth constrained optimization

    Get PDF
    In this paper, we consider mixed-integer nonsmooth constrained optimization problems whose objective/constraint functions are available only as the output of a black-box zeroth-order oracle (i.e., an oracle that does not provide derivative information) and we propose a new derivative-free linesearch-based algorithmic framework to suitably handle those problems. We first describe a scheme for bound constrained problems that combines a dense sequence of directions (to handle the nonsmoothness of the objective function) with primitive directions (to handle discrete variables). Then, we embed an exact penalty approach in the scheme to suitably manage nonlinear (possibly nonsmooth) constraints. We analyze the global convergence properties of the proposed algorithms toward stationary points and we report the results of an extensive numerical experience on a set of mixed-integer test problems
    • …
    corecore